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Abstract

This paper studies asset price bubbles in a continuous time model using the local martin-
gale framework. Providing careful definitions of the asset’s market and fundamental price, we
characterize all possible price bubbles in an incomplete market satisfying the ”no free lunch
with vanishing risk” and ”no dominance” assumptions. We propose a new theory for bubble
birth which involves a nontrivial modification of the classical framework. We show that the
two leading models for bubbles as either charges or as strict local martingales, respectively, are
equivalent. Finally, we investigate the pricing of derivative securities in the presence of asset
price bubbles, and we show that: (i) European put options can have no bubbles, (ii) European
call options and discounted forward prices can have bubbles, but the magnitude of their bub-
bles must equal the magnitude of the asset’s price bubble, (iii) with no dividends, American
call prices must always equal an otherwise identical European call’s price, regardless of bub-
bles, (iv) European put-call parity in market prices must always hold, regardless of bubbles,
and (v) futures price bubbles can exist and they are independent of bubbles in the underlying
asset’s price. These results imply that in a market satisfying NFLVR and no dominance, in the
presence of an asset price bubble, risk neutral valuation can not be used to match call option
prices. We propose, but do not implement, some new tests for the existence of asset price
bubbles using derivative securities.
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1 Introduction

Asset price bubbles have fascinated economists for centuries, one of the earliest recorded price
bubbles being the Dutch tulipmania in 1634-37 (Garber [28], [29]), followed by the Mississippi
bubble in 1719-20 (Garber [29]), the related South Sea bubble of 1720 ((Garber [29], Temin
and Voth [61]), up to the 1929 U.S. stock price crash (White [67], DeLong and Shleifer [17],
Rappoport and White [54], Donaldson and Kamstra [21]) and the more recent NASDAQ price
bubble of 1998-2000 (Ofek and Richardson [50], Brunnermeier and Nagel [6], Cunado, Gil-
Alana and Perez de Gracia [12], Pastor and Veronesi [51], Battalio and Schultz [5]). Motivated
by these episodes of sharp price increases followed by price collapses, economists have studied
questions related to the existence of price bubbles, both theoretically and empirically.

Sufficient conditions for the existence and non-existence of price bubbles in economic
equilibrium has been extensively investigated. Bubbles can not exist in finite horizon ratio-
nal expectation models (Tirole [62], Santos and Woodford [55]). They can arise, however,
in markets where traders behave myopically (Tirole [62]), where there are irrational traders
(DeLong, Shleifer, Summers, Waldmann [16]), in infinite horizon growing economies with
rational traders (see Tirole [63], O’Connell and Zeldes [49], Weil [64]), economies where ra-
tional traders have differential beliefs and when arbitrageurs cannot synchronize trades (Abreu
and Brunnermeier [1]) or when there are short sale/borrowing constraints (Scheinkman and
Xiong [56], Santos and Woodford [55]). For good reviews see Camerer [7] and Scheinkman
and Xiong [57]. In these models, albeit for different reasons, arbitrageurs cannot profit from
and thereby eliminate price bubbles (via their trades). Equilibriums with bubbles share many
of the characteristics of sunspot equilibrium where extrinsic uncertainty can affect the allo-
cation of resources solely because of traders self-confirming beliefs (see Cass and Shell [9],
Balasko, Cass and Shell [3]). Indeed, in bubble economies, the self-confirming beliefs often
correspond to the expectation that one can resell the asset to another trader at a higher price
(see Harrison and Kreps [33], Scheinkman and Xiong [57]).

Equilibrium models impose substantial structure on the economy, in particular, investor
optimality and a market clearing mechanism equating aggregate supply to aggregate demand.
Price bubbles have also been studied in less restrictive settings, using the insights and tools of
mathematical finance. These papers are mainly concerned with the characterization of bubbles
and the pricing of derivative securities (see Loewenstein and Willard [44], [45], Cox and Hob-
son [11], Heston, Loewenstein and Willard [35]). Recently, Jarrow, Protter and Shimbo [40]
have extended and refined these insights for complete market economies with infinite trading
horizons.

The current paper extends the analysis in Jarrow, Protter and Shimbo [40] to incomplete
markets where all traders act as price takers, i.e. a competitive market. Models where bubbles
can arise due to non-competitive trader behavior are not explored herein (see Jarrow [39] and
Bank and Baum [4] for this class of models). Given in this paper is a stochastic price process
S = (St)t≥0 with S ≥ 0 and a risk free money market accountr = (rt)t≥0, both defined on
a filtered complete probability space(Ω,F ,F, P ) whereF = (Ft)t≥0. The First Fundamental
Theorem of asset pricing states, heuristically, that there are no arbitrage opportunities in such
a model if and only if there exists another probability measureQ, equivalent toP , such that
underQ the processS is a martingale. This dates back to the fundamental work of Harrison
and Kreps [34].
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Harrison and Kreps assumed quite strong hypotheses, and under these restrictive hypothe-
ses,S was always a nice (uniformly integrable)L2 martingale underQ. Modern models are
less simple, and the Delbaen - Schachermayer [13] theory states that there is no arbitrage in the
technical sense of NFLVR, if and only ifQ rendersS into aσ martingale. However sinceS is
assumed to be nonnegative, it is bounded below (by zero), and anyσ martingale bounded be-
low is alocal martingale. So we do not need to consider the more general case ofσ martingales
here. Indeed, underQ the price processS could be a uniformly integrable martingale, just a
martingale, or even a strict local martingale. Which form the price process takes is related to
whether or not price bubbles exist.

To develop the concept of a bubble, we need to define the asset’sfundamental price. This
is equivalent to the arbitrage free price in the Harrison and Kreps framework. As the subject
has evolved, fundamental prices and market prices have often been confused. We define each
of these prices carefully, rigorously clarifying the distinction. We re-introduce the notion of
no dominancewhich dates back to Merton’s classic paper [48], but which has largely been
forgotten in the mathematical finance literature. Merton’s original definition was not stated in
mathematical terms. We do that here, and then use no dominance to show that bubbles can
arise only in incomplete markets. (We note in passing that much of the literature concerns
the study of bubbles in complete markets (see Loewenstein and Willard [44], [45], Cox and
Hobson [11], and Heston, Loewenstein and Willard [35]), and therefore is, in some cases,
studying an object which does not exist.).

As shown by Jarrow, Protter and Shimbo [40] in the continuous time setting, but otherwise
well-known in the discrete time economics literature (see Diba and Grossman [19], Weil [64]),
a problem with the current theory of bubbles is that bubbles can end, or “burst,” but that they
cannot be ”born” after the model starts. That is, they must exist at the start of the model, at
time 0, or not at all. Of course, this property contradicts economic intuition and historical
experience. We solve this problem in a novel way.

First, we show this property is a consequence of there being a unique local martingale
measure, or by the Second Fundamental Theorem of asset pricing, a complete market. In an
incomplete market, where there are an infinite number of local martingale measures, using
the ideas of Jacod and Protter ([37]; see also Schweizer and Wissel [58]), at time0 we let
the market “choose” a risk neutral measureQ1 which rendersS into a uniformly integrable
martingale. This is equivalent to there being no bubbles at time0. Then, at some future
random timet0, the market changes its choice and “chooses” a different measureQ2 which
rendersS into a strict local martingale;and a bubble is born. This shock could be due to
intrinsic uncertainty ([27]) or extrinsic uncertainty ([9]) - a sunspot. This shift in measures can
be thought of as roughly analogous to a phase change in an Ising model, or in a more economic
tradition, a structural shift in the economy. This modification requires a non-trivial extension
to the standard arbitrage-free pricing theory, which always assumes a fixed local martingale
measure for all times.

Our extension also generates an unexpected insight. Traditionally, the study of bubbles
has been viewed from two apparently different perspectives, one we call thelocal martingale
approach, which we discussed above, and the other based on finitely additive linear operators
(or “charges”), as typified in Gilles [30], Gilles and Leroy [31], Jarrow and Madan [41]. We
show these two approaches are, in fact, the same in Theorem 8.1 below.

In the popular press, bubbles are conjectured to exist sector wide. Recent examples might
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include the NASDAQ price bubble of 1998 - 2000, or the “housing bubble” either here (Case
and Shiller [8]) or earlier in Japan (Stone and Ziemba [60]). We show how the theory of
bubbles for individual assets is easily extended to bubbles in market indexes and/or market
portfolios.

Given the existence of bubbles in asset prices, an interesting set of questions arises as to
how this existence impacts the pricing of derivative securities - calls, puts, forwards, futures;
whether bubbles can independently exist in the derivative securities themselves; and whether
bubbles can, in fact, invalidate the well-known put-call parity relation. Partial answers to
these questions were obtained in complete market models using only the NFLVR assumption
(see Cox and Hobson [11]). As discussed previously, adding the no dominance assumption
to NFLVR, Jarrow, Protter and Shimbo [40] show that bubbles can arise only in incomplete
markets. Hence, the previous answers to these questions were not really useful in this regard,
and therefore they remain largely unanswered. We answer these questions herein.

First, we extend the definition of an asset’s fundamental price to the fundamental price for
a derivative security. This involves one subtlety in that the derivative security’s payoffs are
written on the market price, and not the fundamental price, of the underlying asset. Given the
proper definition, and under both the NFLVR and no dominance assumptions, we show that
European put options can have no bubbles, but that European call options can. In fact, the
magnitude of the bubble in a European call option’s price must equal the magnitude of the
bubble in the underlying asset’s price. In addition, using Merton’s [48] original argument, but
in our context, we show that European put-call parity always holds for both the fundamental
and market prices of the relevant derivative securities, independent of the existence of bubbles
in the underlying asset’s price. Bubbles in the underlying stock price imply that there exists no
local martingale measure such that the expected discounted value of the call option’s payoffs
equals the market price. And, the market satisfies NFLVR and no dominance. Thus, risk
neutral valuation cannot be used to match call option prices in the presence of an asset pricing
bubble.

Next, we study American call option pricing under the standard no dividend assumption,
and we show that the market price of a European call option must equal the market price of the
American call option, even in the presence of asset price bubbles, extending a previous theorem
of Merton’s [48] in this regard. In fact, even more is true. Relative to its fundamental price,
American call options themselves can have no bubbles, unlike their European counterparts.

Finally, we study forward and futures prices. We show that the discounted forward price
of a risky asset can have a bubble, and if it exists, it must equal the magnitude of the bubble in
the asset’s price. With respect to futures, in the existing finance literature, the characterization
of a futures price implicitly (and sometimes explicitly) uses the existence of a given local
martingale measureQ which makes the futures price a martingale (e.g., see Duffie [22], p.
173 or Shreve [59], p. 244). Since futures prices have bounded maturities, this excludes (by
fiat), the existence of futures price bubbles. Thus, to study bubbles in futures prices, we first
need to generalize the characterization of a futures price to remove this implicit (or explicit)
restriction. Accomplishing this extension, we then show that futures prices can have bubbles,
both positive andnegative,and unlike discounted forward prices, the magnitude of a futures
price bubble need not equal the magnitude of the underlying asset price’s bubble.

Before concluding, we comment on the existing literature testing for asset price bubbles in
various markets (e.g. Evans [24], Flood and Garber [26], West [65],[66], Diba and Grossman
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[20], Donaldson and Kamstra [21]). As is well known, testing for price bubbles in the asset
prices themselves involves the specification of the local martingale measureQ, and hence
represents a joint hypothesis. We add no new insights in this regard. However, given our
increased understanding of the pricing of derivative securities with asset price bubbles, some
new tests using call and put prices are proposed. Empirical implementation of these proposed
tests await subsequent research.

An outline for this paper is as follows. Section 2 provides the model setup, while section
3 defines the fundamental price and price bubbles. Section 4 characterizes all possible asset
price bubbles. Examples are provided in section 5. Section 6 studies derivatives securities and
section 7 clarifies forward and futures price bubbles. Section 8 connects the local martingale
approach with the charge approach to price bubbles. Finally, section 9 concludes with a brief
discussion of the empirical literature with respect to price bubbles.

2 The Model

Important in studying bubbles is the precise mathematical definition of a bubble. Histori-
cally there are two approaches: one we term thelocal martingale approach(Loewenstein and
Willard [44], [45], Cox and Hobson [11], and Heston, Loewenstein and Willard [35]) and the
other we call thecharges approach(Gilles [30], Gilles and Leroy [31], Jarrow and Madan
[41]). In Section 8 we show that these two approaches are the same. Therefore, without loss of
generality, we first present the local martingale approach. This section presents the necessary
model structure.

2.1 The Traded Assets

Let (Ω,F ,F, P ) be a filtered complete probability space. We assume that the filtrationF =
(Ft)t≥0 satisfies the “usual hypotheses.” (See Protter [53] for the definition of the usual hy-
potheses and any other undefined terms in this paper.) We assume that our economy contains
a traded risky asset and a money market account. We take the money market account as a
numéraire. In particular, the price of one unit of the money market account is the constant value
1. Changing the nuḿeraire is standard in this literature, and after the change of numéraire, the
spot interest rate is zero. Consequently, all prices andcash flowsdefined below are relative to
the price of the money market account.

Let τ be a stopping time which represents the maturity (or life) of the risky asset. LetD =
(Dt)0≤t<τ be a c̀adl̀ag semimartingale process adapted toF and representing the cumulative
dividend process of the risky asset. LetXτ ∈ Fτ be the timeτ terminal payoff or liquidation
value of the asset. We assume thatXτ , D ≥ 0. Throughout this paper, we use either(Xt)t≥0

or X to denote a stochastic process andXt to denote the value of the process sampled at time
t. We also adopt a convention that if we give a value of a process at eacht in the definition of a
process, we define the process by choosing its càdl̀ag version unless otherwise stated. See for
example Protter [52] for a related discussion.

The market priceof the risky asset is given by the non-negative càdl̀ag semimartingale
S = (St)0≤t≤τ . Note that fort such that4Dt > 0, St denotes a priceex-dividend, sinceS is
càdl̀ag.
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Let W be the wealth process associated with the market price of the risky asset, i.e.

Wt = St +
∫ t∧τ

0
dDu + Xτ1{τ≤t}. (1)

The market value of the wealth process is the position in the stock plus all accumulated divi-
dends, and the terminal payoff ift ≥ τ . Since the risky asset does not exist afterτ , we focus
on [0, τ ] by stopping every process atτ , and thenF = Fτ .

2.2 No Free Lunch with Vanishing Risk

Key to understanding an arbitrage opportunity is the notion of a trading strategy. Atrading
strategyis defined to be a pair of adapted processes(π, η) representing the number of units of
the risky asset and money market account held at timet with π ∈ L(W ).1 The corresponding
wealth processV of the trading strategy(π, η) is given by

V π,η
t = πtSt + ηt. (2)

Assume temporarily thatπ is a semimartingale. Then, aself-financing trading strategywith
V π

0 = 0 is a trading strategy(π, η) such that the associated wealth processV π,η is given by

V π,η
t =

∫ t

0
πudWu

=
∫ t

0
πudSu +

∫ t∧τ

0
πudDu + πτXτ1{τ≤t}

=
(

πtSt −
∫ t

0
Su−dπu − [πc, Sc]t

)
+

∫ t∧τ

0
πudDu + πτXτ1{τ≤t}

= πtSt + ηt (3)

where we have used integration by parts, and where

ηt =
∫ t∧τ

0
πudDu + πτXτ1{τ≤t} −

∫ t

0
Su−dπu − [πc, Sc]t. (4)

Discarding the temporary assumption thatπ is a semimartingale, we can define aself-financing
trading strategy(π, η) to be a pair of processes, withπ predictable andη optional such that:

V π,η
t = πtSt + ηt =

∫ t

0
πudWu = (π ·W )t,

whereπ ∈ L(W ) for P . As noted, a self-financing trading strategy starts with zero units of
the money market account,η0 = 0, and all proceeds from purchases/sales of the risky asset are
financed/invested in the money market account. Because equation (4) shows thatη is uniquely
determined byπ if a trading strategy is self-financing, without loss of generality, we represent
(π, η) by π.

To avoid doubling strategies (see Harrison and Pliska [32]), we need to restrict the class of
self-financing trading strategies further.

1See Protter [53] for the definition ofL(W ). Here we are still working under the original (objective) measureP .
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Definition 2.1 (Admissibility). Let V π be a wealth process given by (3). We say that the
trading strategyπ is a−admissibleif it is self-financing andV π

t ≥ −a for all t ≥ 0 almost
surely. We say a trading strategy isadmissibleif it is self-financing and there exists ana ∈ R+

such thatV π
t ≥ −a for all t almost surely. We denote the collection of admissible strategies

byA.

The notion of admissibility corresponds to a lower bound on the wealth process, an implicit
inability to borrow if one’s collateralized debt becomes too large (e.g., see Loewenstein and
Willard [44] for a related discussion). The restriction to admissible trading strategies is the
reason bubbles can exist in our economy (see Jarrow, Protter and Shimbo [40]).

We can now introduce the meaning of an arbitrage-free market. As shown in the math-
ematical finance literature (see Delbaen and Schachermayer [13], [14] or Protter [52]), the
appropriate notion is that ofNo Free Lunch with Vanishing Risk(NFLVR). Let2

K = {W π
∞ = (π ·W )∞ : π ∈ A} (5)

C = (K − L+
0 ) ∩ L∞ (6)

Definition 2.2 (NFLVR). We say that a market satisfies NFLVR if

C̄ ∩ L+
∞ = {0} (7)

whereC denotes the closure ofC in the sup-norm topology onL∞.

Roughly, NFLVR effectively excludes all self financing trading strategies that have zero
initial investment, and that generate non-negative cash flows for sure and strictly positive cash
flows with positive probability (called, simple arbitrage opportunities), plus sequences of trad-
ing strategies that approach these simple arbitrage opportunities. We assume that our market
satisfies NFLVR.

Assumption 2.1. The market satisfies NFLVR .

Key to characterizing a market satisfying NFLVR is an equivalent local martingale mea-
sure.

Definition 2.3 (Equivalent Local Martingale Measure). LetQ be a probability measure equiv-
alent toP such that the wealth processW is a Q-local martingale. We callQ an Equivalent
Local Martingale Measure (ELMM), and we denote the set of ELMMs byMloc(W ).

By the First Fundamental Theorem of Asset Pricing (Delbaen and Schachermayer [14]),
this implies that the market admits an equivalentσ-martingale measure. By Proposition 3.3
and Corollary 3.5, Ansel and Stricker [2, pp. 307, 309], aσ-martingale bounded from below is
a local martingale. (For the definition and properties ofσ-martingales, see Protter [53], Emery
[23], Delbaen and Schachermayer [14], Jacod and Shiryaev [38, Section III.6e]). Thus we have
the following theorem:

Theorem 2.1 (First Fundamental Theorem). A market satisfies NFLVR if and only if there
exists an ELMM.

2L∞ is the set of a.s. bounded random variables andL+
0 is the set of nonnegative finite-valued random variables.
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Theorem 2.1 holds even if the price process is not locally bounded due to the assumption
that Wt is non-negative.3 In Jarrow, Protter and Shimbo [40] we studied the existence and
characterization of bubbles under NFLVR in complete markets. In this paper we discuss market
prices and bubbles under NFLVR in incomplete markets. Hence, by the Second Fundamental
Theorem of asset pricing (see, e.g., Protter [53]), this implies that the ELMM is not unique in
general, that is|Mloc(S)| ≥ 2, where| · | denotes cardinality. The next section studies the
properties ofMloc(S) in an incomplete market.

2.3 The Set of Equivalent Local Martingale Measures

Let MUI(W ) be the collection of equivalent measuresQ such thatW is a Q-uniformly in-
tegrable martingale. We call such a measure an Equivalent Uniformly Integrable Martingale
Measure (EUIMM). Then,MUI(W ) is a subset ofMloc(W ). Let

MNUI(W ) = Mloc(W )\MUI(W ) (8)

be the subset ofMloc(W ) such thatW is not a uniformly integrable martingale. In general,
both of the setsMUI(W ) andMNUI(W ) are non-empty. To see this in a particular case,
consider the following lemma.

Lemma 2.1. This example is a simplified version of the example in Delbaen and Schacher-
mayer [15]. LetB1, B2 be two independent Brownian motions. Fixk > 1 and letσ =
inf{E(B2)t = k} whereE(X) is the stochastic exponential ofX given as the solution of the
stochastic differential equationdYt = Yt−dXt, Y0 = 1. (Here we need to assume thatX has
no jumps smaller than−1 to ensure thatX is always positive.) Define the processesZ andM
by

Zt = E(B2)t∧σ, Mt = E(B1)t∧σ. (9)

Then,Z is a uniformly integrable martingale,M is a non-uniformly integrable martingale and
the productZM is a uniformly integrable martingale.

Proof. Observe thatM andZ are non-negative local martingales. SinceB1 andB2 are inde-
pendent,[B1, B2] ≡ 0 and

MtZt = E(B1 + B2 + [B1, B2])t∧σ = E(B1 + B2)t∧σ. (10)

In particularMZ is a local martingale.Z is a uniformly integrable martingale since it is
bounded.

E[M∞] =E[Mσ1{σ<∞}] + E[M∞1{σ=∞}] = E[Mσ1{σ<∞}]

=E

[∫
MuP (σ ∈ du)

]

=
∫

E[Mu]P (σ ∈ du)

=P (σ < ∞),

(11)

3In Delbaen and Schachermayer [14], the driving semimartingale (price process) takes value inRd and is not
locally bounded from below.
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where the second line of the equations above follows becauseσ andM are independent. More-
over since the stopping timeσ is the hitting time ofk, we have

0 ≤ E(Bσ)t ≤ k

which implies thatE[E(B)σ] = 1 (sinceE(Bσ) is bounded). However

1 = E[E(B)σ] = 0P (σ = ∞) + kP (σ < ∞),

which implies thatP (σ < ∞) = 1
k , and finallyE[M∞] = P (σ < ∞) = 1

k . It follows thatM
is not a uniformly integrable martingale, sinceM0 = 1 6= 1

k . Similarly we can show that

E[M∞Z∞] = E[M∞Z∞1{σ<∞}] = kE[Mσ1{σ<∞}] = k · 1
k

= 1 (12)

and it follows thatMZ is a uniformly integrable martingale.

Corollary 2.1. There exists a NFLVR economy such that bothMUI(W ) andMNUI(W ) are
non-empty.

Proof. In lemma 2.1, letQ be a probability measure under whichB1, B2 are independent
Brownian motions. SinceM is not uniformly integrable underQ, Q ∈ MNUI(M). Define a
new measureR onF∞ by dR = Z∞dQ. Then by constructionR ∈MUI(M).

2.4 No Dominance

As shown in Jarrow, Protter and Shimbo [40], NFLVR is not sufficient in a complete market to
exclude bubbles. Also needed is the additional hypothesis ofno dominance(originally used by
Merton [48]). This section introduces the necessary structure for the notion of no dominance.

For each admissible trading strategyπ ∈ A, its wealth processV is given by

V π
t =

∫ t

0
πudWu (13)

whereV π
t is a σ-martingale bounded from below. Therefore, it is a local martingale under

eachQ ∈Mloc(W ).
For the remainder of the paper, letν represent some fixed and constant (future) time. Let

φ = (∆,Ξν) denote a payoff of an asset (or admissible trading strategy) where: (i)∆ =
(∆t)0≤t≤ν is an arbitrary c̀adl̀ag non-negative and non-decreasing semimartingale adapted to
F which represents the asset’s cumulative dividend process, and (ii)Ξν ∈ Fν is a non-negative
random variable which represents the asset’s terminal payoff at timeν.

Finally, letΦ0 be the collection of all payoffs available in this form. Unfortunately, this set
Φ0 of asset payoffs is too large and lacks certain desirable properties. We, therefore, need to
restrict our attention to the subsetΦ of Φ0 defined by

Definition 2.4 (Set of Super-replicated Cash Flows).

LetΦ := {φ ∈ Φ0 : ∃π ∈ A, a ∈ R+ such that∆ν + Ξν ≤ a + V π
ν }. (14)
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The setΦ represents those asset cash flows that can be super-replicated by trading in the
risky asset and money market account. As seen below, it is the relevant set of cash flows for
our no dominance assumption. We first show that this subset of asset cash flows is a convex
cone.

Lemma 2.2. Φ is closed under addition and multiplication by positive scalars, i.e. it is a
convex cone.

Proof. Fix φ1, φ2 ∈ Φ and letφ = φ1 + φ2 whereφi = (∆i,Ξi,νi
) with maturityνi. Without

loss of generality, we can takeν1 ≤ ν2. There existsπ1, π2 such that

∆i
t + Ξi,νi

1{νi≤t} ≤ ai +
∫ t

0
πi

udWu, i = 1, 2 (15)

Let ∆t = ∆1
t + ∆2

t + Ξ1,ν1
1{ν1=t}, ν = ν2, andΞν = Ξ2,ν2

. The proof for multiplication is
trivial.

∆t + Ξν1{ν≤t} ≤ (a1 + a2) +
∫ t

0
(π1

u + π2
u)dWu = a +

∫ t

0
πudWu, (16)

wherea = a1 + a2, π = π1 + π2.

If φ ∈ Φ then for eachQ ∈Mloc(W ),

EQ[∆ν + Ξν ] ≤ a + EQ[V π
ν ] ≤ a. (17)

The first inequality follows becauseV π is a wealth process of admissible trading strategies.
The second inequality follows becauseV π

ν is a non-negative (because both∆ν andΞν are
nonnegative)Q-local martingale bounded below, and hence aQ-supermartingale such that
V π

0 = 0. Therefore, each assetφ ∈ Φ is integrable under any ELMM. This is the reason for
restricting our attention to the set of cash flowsΦ ⊂ Φ0.

This setΦ is large enough to contain many of the assets of interest in derivatives pricing.
For example:

Example 2.1(Call Option). Consider a call option onS maturing at timeT with strike price
K. Assume that the stock does not pay dividends. Then, we can make the identification:
W = S, ∆ ≡ 0, ν = T andΞν = (ST −K)+.

It is easily seen that this claim is super-replicated by the trading strategyπ = (1{t≤T})t≥0

with a = S0. Therefore, the payoff to this call option is inΦ.

To motivate the definition of no dominance, suppose that there are two different ways of
obtaining a cash flowφ ∈ Φ. Assume that we can either buy an assetA which produces
the cash flowφ, or that we can create an admissible trading strategy, a portfolioB, that also
produces the cash flowφ. Further, suppose that the price ofA is higher than the construction
cost ofB. In this illustration, portfolioB dominates assetA, because it has the same cash flows
but a lower price.

At first glance, this situation would seem to generate a simple arbitrage trading strategy
(i.e. violate NFLVR). Indeed, one would like to short assetA and long the trading strategyB.
However, for many market economies, this combined trading strategy would not be admissible
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because of the short position in assetA. Hence, not all such ”mispricings” are excluded by the
NFLVR assumption (for an example, see Jarrow, Protter and Shimbo [40]). To exclude such
”mispricings,” we need an additional assumption.

We note that if traders prefer more wealth to less, then no rational agent would ever buyA
to hold in their optimal portfolio. If a trader wanted the cash flowφ, then they would hold the
trading strategyB instead. This implies that a necessary condition for an economic equilibrium
is that the price ofA and the construction cost ofB must coincide. Consequently, we would
not expect to see any dominated assets or portfolios in a well-functioning market.

To formalize this idea, let us denote themarket priceof φ at timet by Λt(φ). Fix φ =
(∆,Ξν) ∈ Φ. For a pair of stopping timesσ < µ ≤ ν, define the net gainGσ,µ(φ), by
purchasingσ and selling atµ ≤ ν, by

Gσ,µ(φ) = Λµ(φ) +
∫ µ

σ
d∆s + Ξν1{ν=µ} − Λσ(φ). (18)

Definition 2.5 (Dominance). Let φ1, φ2 ∈ Φ be two assets. If there exists a stopping time
σ < ν such that:

Gσ,u(φ2) ≥ Gσ,u(φ1), ∀u > σ

almost surely, and if there exists a stopping timeσ ≤ µ ≤ ν such thatE[1{G2
σ,µ>G1

σ,µ}|Fσ] > 0
almost surely, then we say that asset 1 is dominated by asset 2 at timeσ.

Finally, we impose the following assumption.

Assumption 2.2(No Dominance). Let the market price be represented by a functionΛt : Φ →
R+ such that there are no dominated assets in the market.

This is Merton’s [48] no dominance assumption in modern mathematical terms. Note that
this assumption consists of two parts. One, the fact that the market price is a function, implies
that for each asset cash flow there is a unique market price. And, two, it implies that the market
price must satisfy no dominance. In essence, it codifies the intuitively obvious idea that, all
things being equal, financial agents prefer more to less. Note that this also excludes suicide
strategies (see Harrison and Pliska [32] for a definition and related discussion). Different from
assumption 2.1, it does not require an admissible trading strategy to exploit any deviations.
It is in fact true that the no dominance assumption is stronger than NFLVR, as the following
lemma asserts.

Lemma 2.3. No Dominance implies NFLVR; however the converse is false.

For an example which is consistent with NFLVR, but excluded by No Dominance, as well
as a proof of Lemma 2.3, see Jarrow, Protter and Shimbo [40].

3 The Fundamental Price and Bubbles

In the classical theory of mathematical finance, for a primary4 asset trading in an arbitrage-
free market, there is no difference between the market price, the abitrage-free price, and the

4By primary we mean not a derivative security on the asset.
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fundamental price, even if the market is incomplete (see Harrison and Kreps [34], Harrison and
Pliska [32]). This is true because the classical theory only considers finite horizon models with
value processes that, under no-arbitrage, areQ-martingales for all EMM’sQ. So, the traded
asset’s market price equals its arbitrage-free price which equals the conditional expectation of
the asset’s payoffs under anyQ. Here (and to be made subsequently precise), the conditional
expectation of the stock’s payoffs is interpreted as the present value of the asset’s future cash
flows, called itsfundamental value. Intuitively, defining abubbleas the difference between
the asset’s market and fundamental prices, we see that (by fiat) classical mathematical finance
theory has no price bubbles!

In contrast, in the modern theory of mathematical finance (post Delbaen and Schacher-
mayer [13], [14]), bubbles can exist. This is the local martingale approach for bubbles due to
Loewenstein and Willard [44], [45] and Cox and Hobson [11]. For a primary asset trading in
a NFLVR market, although there is still no difference between the market and arbitrage-free
prices, these need not be equal to the conditional expectation of the asset’s payoffs - the fun-
damental price. Indeed, if for a givenQ ∈ Mloc(W ) the asset’s price is a strictQ - local
martingale, then a bubble exists. As is well known from the empirical literature (Diba and
Grossman [19], Weil [64]) and as shown below, bubbles must be non-negative and they either
exist at the start of the model, or they do not exist at all. This is an unsatisfactory implication
of the existing model structure.

In addition, as shown by Jarrow, Protter and Shimbo [40], adding the assumption of no
dominance in a complete market precludes the existence of bubbles. Therefore, to study bub-
bles using the local martingale approach, one must really investigate an incomplete market.
Using the same model structure, in conjunction with an arbitrary rule to choose a unique
Q ∈ Mloc(W ) making the asset’s price a strictQ - local martingale, generates a market
with bubbles. But, unfortunately, this straightforward extension still retains the implication
that bubbles cannot arise after the model starts. To obtain a theory that incorporates bubble
”birth” in an incomplete market, we need to extend the standard local martingale approach as
presented in section 2. This is the purpose of the next section.

3.1 The Extended Economy

This section extends the economy of section 2 to allow for the possibility of bubble ”birth” after
the model starts. For pedagogical reasons we choose the simplest and most intuitive structure
consistent with this extension. As indicated below, our extension could be easily generalized,
but at a significant cost in terms of its mathematical complexity. We leave this generalization
to future research.

To begin this extension, we let(σi)i≥0 denote an increasing sequence of random times with
σ0 = 0. And, we let(Y i)i≥0 be a sequence of random variables such that(Y i)i≥0 and(σ)i≥0

are independent each other. Moreover, we further assume that both(Y i)i≥0 and(σ)i≥0 are also
independent of the underlying filtrationF to which the price processS is adapted. The random
times(σi)i≥0 should be interpreted as representing the times of structural/regime shifts in the
economy, and(Y i)i≥0 should be interpreted as the relevant variable(s) characterizing the state
of the economy (e.g. unemployment, inflation, technological advances, etc.) at those times.
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Define the two stochastic processes(Nt)t≥0 and(Yt)t≥0 by

Nt =
∑

i≥0

1{t≥σi} and Yt =
∑

i≥0

Y i1{σi≤t<σi+1}. (19)

LetH be a natural filtration generated byN andY and define the enlarged filtrationG = F∨H
(see Protter [53] for a discussion of some of the general theory of filtration enlargement). By
the definition ofG, (σi)i≥0 is an increasing sequence ofG stopping times.

SinceN andY are independent ofF, every(Q,F)-local martingale is also a(Q,G)-local
martingale. By this independence, changing the distribution ofN and/orY does not affect
the martingale property of the wealth processW . Therefore, the set of ELMMs defined on
G∞ is a priori larger than the set of ELMMs defined onF∞. We are not concerned with this
enlarged set of ELMMs. We will, instead, focus our attention on the later and sometimes write
MF

loc(W ) to explicitly recognize this restriction. With respect to this restricted set, given the
Radon Nikodym derivativeZ∞ = dQ

dP |F∞ , we define its density process byZt = E[Z∞|Ft].
Of course,Z is anF-adapted process. Note that this construction implies that the distribution
of Y andN is invariant with respect to a change of ELMMs inMF

loc(W ).
The independence of the filtrationH from F gives this increased randomness in our econ-

omy the interpretation of beingextrinsic uncertainty. It is well known that extrinsic uncertainty
can affect economic equilibrium as in the sunspot equilibrium of Cass and Shell [9]. This form
of our information enlargement, however, is not essential to our arguments. It could be relaxed,
making bothN andY pairwise dependent, and dependent on the original filtrationF as well.
This generalization would allow bubble birth to depend onintrinsic uncertainty(see Froot and
Obstfeld [27] for a related discussion of intrinsic uncertainty). However, this generalization
requires a significant extension in the mathematical complexity of the notation and proofs, so
it is not emphasized in the text.

3.2 The Fundamental Price

This section makes precise our definition of the fundamental price. The fundamental price
in our extended economy depends on the state of the economy at timet as represented by the
original filtration(Ft)t≥0, the state variable(s)Yt, and the number of regime shiftsNt that have
occurred. SupposeNt = i. LetQi ∈Mloc(W ) be the ELMM ”selected by the market” at time
t givenY i. Of course, in an incomplete market, the set of ELMMsMloc(W ) is infinite. To
uniquely choose the ELLMQi, i.e. to fix theQi ”selected by the market,” we use the insights
of Schweizer and Wissel [58] and Jacod and Protter [37] who show that if enough derivative
securities trade (of a certain type), then the market’s choice ofQi can in theory be uniquely
determined. These traded derivative securities effectively complete the market, enabling the
unique determination ofQi. We assume the Jacod and Protter [37] conditions hold for the
remainder of the paper.

As in the earlier literature on bubbles, the fundamental price of an asset (or portfolio)
should represent the present value of its future cash flows. Our definition captures this idea.

Definition 3.1 (Fundamental Price). Letφ ∈ Φ be an asset with maturityν and payoff(∆,Ξν).
We define thefundamental priceΛ∗t (φ) of assetφ by

Λ∗t (φ) =
∞∑

i=0

EQi

[∫ ν

t
d∆u + Ξν1{ν<∞}

∣∣∣∣Ft

]
1{t<ν}∩{t∈[σi,σi+1)} (20)
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∀t ∈ [0,∞) whereΛ∗∞(φ) = 0.

In particular the fundamental price of the risky assetS∗t is given by

S∗t =
∞∑

i=0

EQi

[∫ τ

t
dDu + Xτ1{τ<∞}

∣∣∣∣Ft

]
1{t<τ}∩{t∈[σi,σi+1)}. (21)

To understand this definition, let us focus on the risky asset’s fundamental price. At any time
t < τ , given that we are in the set{σi ≤ t < σi+1}, the right side of expression (21 ) simplifies
to:

S∗t = EQi

[∫ τ

t
dDu + Xτ1{τ<∞}

∣∣∣∣Ft

]
.

Given the market’s choice of the ELMM isQi ∈ Mloc(W ) at time t, we see that the fun-
damental price equals the present value of its future cash flows. Note that the payoff of the
asset at infinity,Xτ1{τ=∞}, does not contribute to the fundamental price. This reflects the
fact that agents cannot consume the payoffXτ1{τ=∞}.5 Furthermore note that at timeτ , the
fundamental priceS∗τ = 0. We emphasize that a fundamental price is not necessarily the
same as the market priceSt. Under NFLVR and no dominance, the market priceSt equals the
arbitrage-free price, but again we emphasize that these need not equal the fundamental price
S∗t .

We can alternatively rewrite the fundamental price in terms of an equivalent probability
measure, indexed by timet. Note however, that this measure will not be in the setMloc(W ).

Theorem 3.1. There exists an equivalent probability measureQt∗ such that

Λ∗t (φ) = EQt∗

[∫ ν

t
d∆u + Ξν1{ν<∞}

∣∣∣∣Ft

]
1{t<ν} (22)

Proof. Let Zi ∈ F∞ be a Radon Nykodim derivative ofQi with respect toP and Zi
t =

E[Zi|Ft]. Define

Zt∗
∞ =

∞∑

i=0

Zi1{t∈[σi,σi+1)} (23)

ThenZt∗ > 0 almost surely and

EZt∗
∞ = E

[ ∞∑

i=0

Zi1{t∈[σi,σi+1)}

]
=

∞∑

i=0

E[Zi1{t∈[σi,σi+1)}]

=
∞∑

i=0

E[Zi]E[1{t∈[σi,σi+1)}]

=
∞∑

i=0

P (σi ≤ t < σi+1)

= 1

(24)

5This convention is nonetheless somewhat arbitrary. The alternative convention is to includeXτ1{τ=∞} in the
asset’s cash flows. The consequence would be that there are no type 1 bubbles (as defined subsequently).
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Therefore we can define an equivalent measureQt∗ onF∞ by dQt∗ = Zt∗dP . The Radon-
Nykodim densityZt∗

t onGt is

Zt∗
t =

dQt∗

dP

∣∣∣∣
Gt

= E[Zt∗|Ft] =
∞∑

i=0

E[Zi1{t∈[σi.σi+1)}|Gt]

=
∞∑

i=0

E[Zi|Gt]1{t∈[σi.σi+1)}.

(25)

Then

Λ∗t (φ) =
∞∑

i=0

EQi

[∫ ν

t
d∆u + Ξν1{ν<∞}

∣∣∣∣Ft

]
1{t<ν}∩{t∈[σi,σi+1)}

=
∞∑

i=0

EQi

[∫ ν

t
d∆u + Ξν1{ν<∞}

∣∣∣∣Gt

]
1{t<ν}∩{t∈[σi,σi+1)}

= E

[( ∞∑

i=0

Zi

Zi
t

1{t∈[σ,σi+1)}

)(∫ ν

t
d∆u + Ξν1{ν<∞}

)∣∣∣∣∣Gt

]
1{t<ν}

(26)

and observing that
Zi

Zi
t

1{t∈[σi,σi+1]} =
Zi1{t∈[σi,σi+1)}∑∞
i=0 Zi

t1{t∈[σi,σi+1)}
,

we can continue:

= E

[(∑∞
i=0 Zi1{t∈[σi,σi+1)}∑∞
i=0 Zi

t1{t∈[σi,σi+1)}

) (∫ ν

t
d∆u + Ξν1{ν<∞}

)∣∣∣∣∣Gt

]
1{t<ν}

= E

[(
Zt∗∞
Zt

)(∫ ν

t
d∆u + Ξν1{ν<∞}

)∣∣∣∣Gt

]
1{t<ν}

= EQt∗

[∫ ν

t
d∆u + Ξν1{ν<∞}

∣∣∣∣Gt

]
1{t<ν}

= EQt∗

[∫ ν

t
d∆u + Ξν1{ν<∞}

∣∣∣∣Ft

]
1{t<ν}

(27)

Definition 3.2 (Valuation Measure, Static and Dynamic Markets). Let Qt∗ be an equivalent
probability measure such that for eachφ ∈ Φ the fundamental price is given by

Λ∗t (φ) = EQt∗

[∫ ν

t
d∆u + Ξν1{ν<∞}

∣∣∣∣Ft

]
1{t<ν}. (28)

Then,Qt∗ is called thevaluation measureat t.
We call the collection of valuation measures(Qt∗)t≥0 thevaluation system.
If Nt = 1 for all t, then

Qt∗(A) = Q0(A) ∀A ∈ F∞, t ≥ 0. (29)

In this case, we say the valuation system isstatic. By construction, in a static market, such a
Qt∗ ∈Mloc(W ). If the market is not static, we say that it isdynamic.
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The∗ superscript is used to emphasize thatQt∗ is the measuredetermined by the market,
and the superscriptt is used to indicate that it is chosen at timet. On {σi ≤ t < σi+1},
the valuation measure coincides withQi ∈ Mloc(W ). As noted before,Qt∗ /∈ Mloc(W ) in
general unless the system is static.6 Given the definition of an asset’s fundamental price , we
can now define the fundamental wealth process.

Definition 3.3 (Fundamental Wealth Process). We define the fundamental wealth process of
the risky price by

W ∗
t = S∗t +

∫ τ∧t

0
dDu + Xτ1{τ≤t}. (30)

Then,

W ∗
t =

∞∑

i=0

EQi

[∫ τ

0
dDu + Xτ1{τ<∞}

∣∣∣∣Ft

]
1{t∈[σi,σi+1)} (31)

∀t ∈ [0,∞) and W ∗∞ =
∫ τ
0 dDu + Xτ1{τ<∞}.

Alternatively, we can rewriteW ∗
t by

W ∗
t =

∞∑

i=0

EQi [W ∗
∞| Ft]1{t∈[σi,σi+1)} ∀t ∈ [0,∞). (32)

In general, the choice of a particular ELMM affects fundamental values. But, for a certain
class of ELMMs,whenτ < ∞ the fundamental values are invariant. This invariant class is
characterized in the following lemma.

Lemma 3.1. Supposeτ < ∞ almost surely. On the set{σi ≤ t < σi+1}, if the market chooses
Qi ∈MUI(W ), then the fundamental price of the risky assetS∗t and fundamental wealthW ∗

t

do not depend on the choice of the measureQi almost surely.

Proof. Fix Q∗, R∗ ∈ MUI(W ). τ < ∞ implies thatW∞ = W ∗∞. Let WQ∗
t andWR∗

t be
the fundamental prices on{σi ≤ t < σi+1} whenQi = Q∗ andR∗ respectively. SinceW is
uniformly integrable martingale underQ∗ andR∗,

WQ∗
t = EQ∗ [W ∗

∞|Ft] = EQ∗ [W∞|Ft]
= Wt = ER∗ [W∞|Ft]
= ER∗ [W ∗

∞|Ft]

= WR∗
t a.s. on{σi ≤ t < σi+1}

(33)

The difference ofWQ∗
t andSQ∗

t does not depend on the choice of measure. ThereforeWQ∗
t =

WR∗
t impliesSQ∗

t = SR∗
t on{σi ≤ t < σi+1}.

6Although the definition of the fundamental price as given depends on the construction of the extended economy,
one could have alternatively used expression (28) as the initial definition. This alternative approach relaxes the extrinsic
uncertainty restriction explicit in our extended economy.
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This lemma applies to the risky asset only. If the measure shifts fromQi ∈ MUI(W ) to
Ri ∈MUI(W ), then the fundamental price of other assets can in fact change.

The next lemma describes the relationship between the fundamental prices of the risky
asset when two measures are involved, one being a measureR∗ ∈MNUI(W ).

Lemma 3.2. Supposeτ < ∞. On{σi ≤ t < σi+1}, consider the case whereQi ∈MUI(W )
andRi ∈MNUI(W ). Then,

WR∗
t ≤ WQ∗

t , a.s. on {σi ≤ t < σi+1}. (34)

That is, the fundamental price based on a uniformly integrable martingale measure is greater
than that based on a non-uniformly integrable martingale measure.

Proof. PickQ∗ ∈MUI(W ) andR∗ ∈MNUI(W ). Sinceτ < ∞ almost surely,W∞ = W ∗∞.
UnderR∗, W is not a uniformly integrable non-negative martingale andWt ≥ ER∗ [W∞|Ft].
Therefore

WQ∗
t −WR∗

t =EQ∗ [W ∗
∞|Ft]−ER∗ [W ∗

∞|Ft]
=EQ∗ [W∞|Ft]−ER∗ [W∞|Ft]
=Wt − ER∗ [W∞|Ft]
≥0.

(35)

We can now finally define what me mean by a price bubble.

3.3 Bubbles

As is standard in the literature,

Definition 3.4 (Bubble). We define the asset price bubbleβ for S by

β = S − S∗. (36)

Recall thatSt is the market price andS∗t is the fundamental value of the asset. Hence, a
price bubble is defined as the difference in these quantities.

4 A Characterization of Bubbles

This section characterizes all possible price bubbles in both static and dynamic models.

4.1 Static Markets

Static markets are the first natural generalization of a complete market. In a complete market,
there is only one ELMM. In a static market, there is also only one ELMM, although it is
possible that not all derivative securities can be replicated by an admissible trading strategy.
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The complete market case was studied in Jarrow, Protter and Shimbo [40]. Since the analysis
is very similar, the reader is referred to the original paper for the relevant proofs.

By definition, in a static market, there exist aQ∗ ∈ Mloc(W ) such thatQ∗t(A) = Q∗(A)
for all t ≥ 0. Then, the fundamental wealth processW ∗

t is given by

W ∗
t = EQ∗

[∫ τ

t
dDu + Xτ1{τ<∞}

∣∣∣∣Ft

]
1{t<τ}

+
∫ t∧τ

0
dDu + Xτ1{τ≤t}

= EQ∗

[∫ τ

0
dDu + Xτ1{τ<∞}

∣∣∣∣Ft

]
,

which is aQ∗-uniformly integrable martingale. SinceW is Q∗-local martingale, this implies
that the price bubbleβ is aQ∗-local martingale.

Recall that the stopping timeτ represents the maturity of our risky asset.

Theorem 4.1. If there exists a non-trivial bubbleβ 6≡ 0 , then we have three and only three
possibilities:

(1) β is a local martingale (which could be a uniformly integrable martingale) ifP (τ =
∞) > 0.

(2) β is a local martingale but not a uniformly integrable martingale if is unbounded, but
with P (τ < ∞) = 1.

(3) β is a strictQ-local martingale7, if τ is a bounded stopping time.

As indicated, there are three types of bubbles that can be present in an asset’s price. Type
1 bubbles occur when the asset has an infinite life with a payoff at{τ = ∞}. Type 2 bubbles
occur when the asset’s life is finite, but unbounded. Type 3 bubbles are for assets whose lives
are bounded.

The first question one considers when discussing bubbles is why arbitrage doesn’t exclude
bubbles in a NFLVR economy. To answer this question, let us consider the obvious candidate
trading strategy for an arbitrage opportunity. This trading strategy is to short the risky asset
during the bubble, and to cover the short after the bubble crashes. For type 1 and type 2 bubbles,
this trading strategy fails to be an arbitrage because all trading strategies must terminate in
finite time, and the bubble may outlast this trading strategy with positive probability. For type 3
bubbles this trading strategy fails because of the admissibility condition. Admissibility requires
the trading strategy’s wealth to exceed some fixed lower bound almost surely. Unfortunately,
with positive probability, a type 3 bubble can increase such that the short position’s losses
violate the lower bound. The admissibility condition is a type of short sale restriction, and
these are well known to generate bubbles in equilibrium models (see Scheinkman and Xiong
[56], Santos and Woodford [55]). For examples of bubbles in a NFLVR market we refer the
reader to Jarrow, Protter and Shimbo [40].

In a complete market, the addition of no dominance assumption excludes these bubbles due
to the ability of an admissible trading strategy to generate alongposition in the asset at a lower

7A strict local martingale is a local martingale that is not a martingale.
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cost than purchasing the asset directly (due to the bubble). Note that synthetically creating a
long position in the asset does not violate the NFLVR admissibility restriction. However, a
static market need not be complete, so the theory of bubbles we discuss herein is not vacuous.

We can refine Theorem 4.1 to obtain a unique decomposition of an asset price bubble that
yields some additional insights.

Theorem 4.2. S admits a unique (up to an evanescent set) decomposition

S = S∗ + β = S∗ + (β1 + β2 + β3), (37)

whereβ = (βt)t≥0 is a c̀adlàg local martingale and

(1) β1 is a c̀adlàg non-negative uniformly integrable martingale withβ1
t → X∞ almost

surely,

(2) β2 is a c̀adlàg non-negative non-uniformly integrable martingale withβ2
t → 0 almost

surely,

(3) β3 is a c̀adlàg non-negative supermartingale (and strict local martingale) such that
Eβ3

t → 0 andβ3
t → 0 almost surely. That is,β3 is a potential.

Furthermore,(S∗ + β1 + β2) is the greatest submartingale bounded above byW .

As in the previous Theorem 4.1,β1, β2, β3 give type 1, 2 and 3 bubbles, respectively. First,
for type 1 bubbles with infinite maturity, we see that a type 1 bubble component converges to
the asset’s value at time∞, X∞. This time∞ valueX∞ can be thought of as analogous to fiat
money, embedded as part of the asset’s price process. Indeed, it is a residual value to an asset
that pays zero dividends for all finite times. Second, this decomposition also shows that for
finite maturity assets,τ < ∞, the critical threshold is that of uniform integrability. This is due
to the fact that whenτ < ∞, the type 2 and 3 bubble components ofβ = (βt)t≥0 converge
to 0 almost surely, while they need not converge inL1. Finally, type 3 bubbles are strict local
martingales, and not martingales.

As a direct consequence of this theorem, we obtain the following corollary.

Corollary 4.1. Any asset price bubbleβ has the following properties:

(1) β ≥ 0,

(2) βτ1{τ<∞} = 0, and

(3) if βt = 0 thenβu = 0 for all u ≥ t.

Condition (1) states that bubbles are always non-negative, i.e. the market price can never
be less than the fundamental value. Condition (2) states that if the bubble’s maturity is finite
τ < ∞, then the bubble must burst on or beforeτ . Finally, Condition (3) states that if the
bubble ever bursts before the asset’s maturity, then it can never start again. Alternatively stated,
Condition (3) states that in the context of our model, bubbles must either exist at the start of
the model, or they never will exist. And, if they exist and burst, then they cannot start again
(this corollary is well known in the empirical literature for discrete time economies, see e.g.
Diba and Grossman [19], Weil [64]).
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4.2 Dynamic Markets

In a dynamic market, there is no single ELMM generating fundamental values across time.
The valuation measuresQs∗ andQt∗ at timess < t are usually two different measures, and
neither is an ELMM. It follows, therefore, that the local martingale property of a bubbleβ in a
static market is no longer preserved.

The following is a trivial but important observation generalizing Corollary 4.1 to dynamic
markets.

Theorem 4.3. Bubbles are nonnegative. That is, ifβ denotes a bubble, thenβt ≥ 0 for all
t ≥ 0.

Proof. Fix t ≥ 0. On{σi ≤ t < σi+1}, the market choosesQi as a valuation measure and the
fundamental priceS∗t is given by

S∗t 1{σi≤t<σi+1} = EQi

[∫ τ

t
dDu + Xτ1{τ<∞} | Ft

]
1{t<τ}1{σi≤t<σi+1}

= S∗it 1{σi≤t<σi+1},
(38)

whereS∗it denotes a fundamental price with valuation measureQi ∈Mloc(W ) and

S∗t =
∑

i

S∗it 1{σi≤t<σi+1} (39)

and

β∗t =
∑

i

βi
t1{σi≤t<σi+1} (40)

By Corollary 4.1,βi = S − S∗i ≥ 0 for eachi and henceβ∗ ≥ 0.

Negative bubbles do not exist even in a dynamic market.
As shown in the previous section, bubble birth is not possible in a static market. In contrast,

in a dynamic market, bubble birth is possible as the next example shows.

Example 4.1. Suppose that the measure chosen by the market shifts at timeσ0 from Q ∈
MUI(W ) to R ∈ MNUI(W ). To avoid ambiguity, we denote a fundamental price based on
valuation measuresQ andR by WQ∗ andWR∗, respectively. By Lemma 3.2, we can choose
Q,R andσ such that the difference of fundamental prices based on these two measures,

WQ∗
σ0

−WR∗
σ0

≥ 0, (41)

is strictly positive with positive probability. Then, the fundamental price and the bubble are
given by

W ∗
t = WQ∗

t 1{t<σ0} + WR∗
u 1{σ0≤t} (42)

βt = βR
t 1{σ0≤t}. (43)

And, a bubble is born at timeσ0.

As shown in Lemma 3.1, a switch from one measureQ to another measureQ′ such that
Q,Q′ ∈ MUI(W ) does not change the value ofW ∗. Therefore, if a bubble does not exist
underQ, it also does not exist underQ′. Bubble birth occurs only when a valuation measure
changes fromQ ∈MUI(W ) to anR ∈MNUI(W ).
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5 Examples

In this section, we discuss several examples. Since Type1 bubbles are simple and few assets
have infinite lifetimes, we focus on assets with finite (but possibly unbounded) maturities.

5.1 Assets with Bounded Payoffs

We first consider those risky assets that have bounded payoffs.

Theorem 5.1. If
∫ τ
0 dDu + Xτ is bounded, thenSt = S∗t and the asset price does not have

bubbles.

Proof. By hypothesis, there existsa ∈ R+ such that
∫ τ
0 dDu + Xτ < a. Then holdinga

units of the money market account dominates holding the risky asset. By No Dominance
(Assumption 2.2)

St = Λt((D, Xτ )) ≤ a. (44)

Since a bounded local martingale is a uniformly integrable martingale, all ELMMs are in
MUI(W ) and bubbles do not exist inS.

Theorem 5.1 also holds for any arbitrary assetφ ∈ Φ with bounded payoffs. We now
provide some useful examples of assets with bounded payoffs.

Example 5.1(Arrow-Debreu Securities).

Let ν be anF-stopping time such thatν ≤ τ almost surely andA ∈ Fν . Consider an
Arrow-Debreu security paying1 atν for ν ≤ τ if eventA happens, denoted byφA = (0,1ν

A).8

Then, the market price ofφA does not have a bubble, i.e.

Λt(φA) = Λ∗t (φA) =
∑

i

EQi [1A|Ft]1{t<τ}1{σi≤t<σi+1}. (45)

The market price of Arrow-Debreu securities equal the conditional valuation probability of
A ∈ Fν implied by the market.

Example 5.2(Fixed Income Securities).

Consider a default free coupon bond with coupons ofC paid at timest1, ..., tn = ν ≤ τ
and a principal payment ofP at timeτ ,9 whereτ is the maturity date of the bond. Then, letting
∆t ≡

∑n
i=1 C1{ti≤t} andΞν = P , we haveφ = (∆, Ξν) with ∆τ + Ξν bounded by the sum

8Recall that we are using the money market account as the numeraire. A transformed analysis applies in the original
(dollar) economy. Here, however, the payoff to the Arrow-Debreu security needs to be redefined to be1 dollar at time
ν. LettingDν denote the timeν market price of the money market account, the payoff to the Arrow-Debreu security
in the nuḿeraire is then1/Dν units at timeν, and not1 unit. This change has no affect on our analysis, because if the
spot rate of interestr ≥ 0 almost surely, withD0 = 1, then1/Dν ≤ 1 almost surely.

9As with the Arrow-Debreu securities, these payoffs are in units of the money market account and they need to be
appropriately transformed to get dollar prices in the original economy.
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of all the coupons and principal payments. Then, by Theorem 5.1, the default free bond price
has no bubbles, i.e.

Λt(φ) = Λ∗t (φ) (46)

=
∑

i

EQi [
n∑

i=1

C1{ti>t} + P1{ν>t}|Ft]1{t<τ}1{σi≤t<σi+1}.

Although this example applies to default free bonds, the same logic can be used to show
that credit risky bonds, interest rate swaps, credit default swaps, and collateralized default
obligations (CDOs) exhibit no bubbles. This is because all of these fixed income securities’
payoffs are bounded. For example, in the case of credit risky bonds, the cash flows are bounded
by the sum of the promised payments. In the case of credit default swaps and CDOs, the
maximum possible payments can be computed at origination of these contracts (see Lando
[43] for a description of these different instruments).

5.2 Black-Scholes Type Economies

It is interesting to study the standard Black-Scholes economy in both static and dynamic mar-
kets, yielding perhaps some unexpected, but new insights.

Example 5.3(Static Market, Finite Horizon).

Fix T ∈ R+ and letSt be a non-dividend paying stock following a geometric Brownian
motion, i.e.

St = exp
{(

µ− σ2

2

)
t + σBt

}
∀t ∈ [0, T ], (47)

whereµ, σ ∈ R+, andB is a standard Brownian motion. Then,S is aQ-martingale, where
Q is the probability measure onFT defined by the Radon-Nikodym derivativedQ/dP =
E(−(µ/σ)B)T .

This is the standard Black Scholes model, and we see by construction that there are no
stock price bubbles.

Example 5.4(Static Market, Infinite Horizon).

If we simply extend formula (47) from[0, T ] to [0,∞), then the situation changes dramat-
ically. On an infinite horizon,St converges to0 almost surely. Thus, the fundamental value of
the stock (recall that it pays no dividends over[0,∞)), is S∗t = 0. By definition, therefore,

βt = St − S∗t = St,

and the entire stock price is a bubble!
In this case,Q is not an EMM onF∞. Indeed,P andQ are singular onF∞. Hence,S is

not a uniformly integrable martingale nor a (regular) martingale under theQ given above, but
only aQ strict local martingale.

Although this example is plausible under NFLVR, when we also introduce the no dom-
inance assumption 2.2, this example becomes problematic. Note that if the stock pays no
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dividends on[0,∞), then no dominance implies that the asset has zero value, i.e.St ≡ 0. In
this case, the model trivializes and becomes useless.

Therefore, if we want to use the Black-Scholes model in a static market, we need to restrict
it to the finite horizon case. And, then one needs to interpretST as either: (i) a liquidating
dividend (final cash flow), or (ii) the resale value at timeT . In either case, because the Black-
Scholes economy as given by expression (47) implies a complete market, we know that under
both NFLVR and no dominance, there cannot be bubbles.

Example 5.5(Dynamic Market, Infinite Horizon).

This example can be considered as an extension of the Black Scholes formula which is well
defined on[0,∞). It is also an example of a dynamic market in which bubble birth occurs.

Let B1, B2 be two independentQ-Brownian motions. Fixk > 1. Let

σ = inf{E(B2)t = k}. (48)

Define the processesZ andS by

Zt = E(B2)t∧σ, St = E(B1)t∧σ. (49)

We regardS as a stock process that pays no dividendsD ≡ 0, and where the stock can default
at timeτ = σ. If it defaults, it pays a final cash flow at the default time equal toXτ = Sσ.

The key difference of this example from the standard Black-Scholes model is the explicit
introduction of a default timeτ = σ, so thatS does not converge to0 almost surely ast →∞.
However, as in lemma 2.1

EQ[S∞] = EQ[E(B1)σ1{σ<∞}] = Q(σ < ∞) =
1
k
, (50)

soS is a non-uniformly integrable martingale.
Let R ∈ Mloc(W ) be the probability measure defined bydR/dQ|Ft = Zt. As shown in

Lemma 2.1,SZ is aQ-uniformly integrable martingale. It follows thatS is anR-uniformly
integrable martingale, since

ER[S∞|Ft] =
EQ[S∞Z∞|Ft]

Zt
=

ZtSt

Zt
= St a.s. (51)

Observe thatS is a geometric Brownian motion stopped byσ underQ andR. Thus,S coin-
cides with standard Black Scholes model on{t < σ}.

Let us now introduce the regime shifting timesσi, and suppose that at each of these times
the market shifts fromQ to R or vice-versa.Then when shifting fromR to Q, a bubble is
born. This is a Black-Scholes like economy that is infinite horizon, but where the stock price
process, prior to default, exhibits bubble birth and bubble disappearance.

5.3 Market Indices

Although the previous discussion concentrates on a single risky assetS, the theory remains
unchanged if there are multiple risky assets andS represents a vector of risky asset price
processes. It also applies to market indices. LetM denote the market price of an asset defined
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as an (weighted) average of (finitely many) individual risky assets trading in the market (e.g.
Dow Jones Industrials, S&P 500 Index, etc.). Of course, the future cash flows associated with
this portfolio are also a weighted average of the cash flows from the individual assets. As
before, we can define the fundamental price of this index. If any asset in the market index has
a bubble, then the market and the fundamental prices of this index differ, and a bubble exists.

Example 5.6(Bubbles in an Index Model).

In portfolio theory, the return on an individual assetRt is often modeled using an index
model:

Rt = b ·RM
t + εt, (52)

whereb is constant,RM
t denotes the return on the index, andεt is a idiosyncratic return that is

independent ofRM
t .

Taking the stochastic exponential of both sides of this expression, we obtain the stock price
processSt, i.e.

St = E(R)t = E(b ·RM )tE(ε)t. (53)

If we assume, as is standard in the literature, that idiosyncratic risk earns no risk premium,
thenε is a local martingale under both the physical and the valuation measure.

Let us consider a static market with the valuation measureQ ∈ Mloc(S). SinceE(b ·
RM ) andE(ε) are independent andb is a constant, the stock price process,S = E(R), is
a Q-uniformly integrable martingale if and only if bothE(RM ) andE(ε) areQ-uniformly
integrable martingales. This implies that under the index model bubbles can exist in a stock
because the bubble exists in a market index, or because it exists within the stock’s idiosyncratic
component itself.

6 Derivative Securities

This section considers bubbles in derivative securities written on the risky asset. We focus on
the standard derivatives: forward contracts, European and American call and put options. We
first need to formalize the definition of the fundamental price of a derivative security.

To simplify the notation, we assume that the risky assetS pays no dividends over the time
interval(0, T ], whereτ > T almost surely. We define an arbitrary (European type)derivative
securityon the risky assetS to be a financial contract that has a random payoff at timeT ,
whereT is called the maturity date. The payoff is given byHT (S) whereHT is a functional
on (Su)u≤T . As is true in practice, our definition of a derivative security reflects the fact that
the financial contract’s payoffs are written on themarket priceof the risky asset, and not its
fundamental value. This is a small, but important observation.

We denote the timet market price of a derivative securityH by ΛH
t . We study derivative

pricing in a dynamic market (hence a static market is a special case). Therefore we assume
that the market chooses a collection of ELMMs(Qi)i≥0 ∈ Mloc(W ) such that the derivative
security’s market priceΛH

t is aQi-local martingale over the time interval{σi ≤ t < σi+1}.
Then, analogous to the risky asset, thefundamental price of the derivative securityis de-

fined to be the conditional expectation of the derivative’s timeT payoff using the valuation
measureQt∗ determined by(Qi)i≥0 ∈Mloc(W ), i.e. EQt∗ [HT (S)|Ft].
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The derivative security’s price bubbleδt is defined as the difference between its market
price and fundamental value,

δt = ΛH
t − EQt∗ [HT (S)|Ft].

The following lemma will prove useful in the subsequent analysis:

Lemma 6.1. Let HT ,H ′
T be the payoffs of two derivative securities with the same maturity

date.
LetΛt(H ′) have no bubble, i.e.

ΛH′
t = EQt∗ [H ′

T (S)|Ft]. (54)

If HT (S) ≤ H ′
T (S) almost surely, then

ΛH
t = EQt∗ [HT (S)|Ft]. (55)

Proof. Since derivative securities have bounded maturities, we only need to consider type 3
bubbles. LetL be a collection of stopping times on[0, T ]. Then for allL ∈ L, ΛL(H) ≤
ΛL(H ′) by No Dominance (Assumption 2.2). SinceΛ(H ′) is a martingale on[0, T ], it is a
uniformly integrable martingale and is in class (D) on[0, T ]. ThenΛ(H) is also in class (D)
and is a uniformly integrable martingale on[0, T ]. (See Jacod and Shiryaev [38, Definition
1.46, Proposition 1.47]). Therefore type 3 bubbles do not exist for this derivative security.

This lemma states that if there is a derivative security with no bubble and whose payoff
dominates another derivative security’s payoff, then the dominated derivative security’s mar-
ket price will have no bubble. This, of course, is an extension of Theorem 5.1 to derivative
securities.

6.1 European Call and Put Options

In this section we consider three standard derivative securities: a forward contract, a European
put option, and a European call option; all on the same risky asset. Each of these derivative
securities are defined by their payoffs at their maturity dates. Aforward contracton the risky
asset with strike priceK and maturity dateT has a payoff[St−K]. We denote its timet market
price asV f

t (K). A European call optionon the risky asset with strike priceK and maturity
T has a payoff[St − K]+, with time t market price denoted asCt(K). Finally, aEuropean
put optionon the risky asset with strike priceK and maturityT has a payoff[K − St]+, with
time t market price denoted asPt(K).10 Finally, let V f

t (K)∗, Ct(K)∗, andPt(K)∗ be the
fundamental prices of the forward contract, call option and a put option, respectively.

A straightforward implication of the definitions is the following theorem.

Theorem 6.1(Put-Call Parity for Fundamental Prices).

C∗
t (K)− P ∗

t (K) = V f∗
t (K). (56)

10To be precise, we note that the strike price is quoted in units of the numeraire for all of these derivative securities.
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Proof. At maturityT ,

(ST −K)+ − (K − ST )+ = ST −K ∀K ≥ 0 (57)

Since a fundamental price of a contingent claim with payoff functionH is EQt∗ [H(S)T |Ft]
with the valuation measureQt∗,

C∗
t (K)− P ∗

t (K) = EQt∗ [(ST −K)+|Ft]− EQt∗ [(K − ST )+|Ft]
= EQt∗ [ST −K|Ft]

= V f∗t(K)

(58)

Note that put-call parity for the fundamental price does not require the no dominance as-
sumption 2.2. It only requires that the asset’s market price process satisfies NFLVR. Further-
more, put-call parity for the fundamental prices holds regardless of whether or not there are
are bubbles in the asset’s market price.

Perhaps surprisingly, put-call parity also holds for market prices, regardless of whether or
not the underlying asset price has a bubble.

Theorem 6.2(Put-Call Parity for Market Prices).

Ct(K)− Pt(K) = V f
t (K) = St −K. (59)

Proof. This is a direct consequence of no dominance (Assumption 2.2). See the proof of
Theorem 6.4.

This theorem and proof are identical to that originally contained in Merton [48]. It de-
pends crucially on the no dominance assumption. If only NFLVR holds, then put-call parity in
market prices need not hold. For an example see Jarrow, Protter and Shimbo [40]. For related
discussions of the economy without no dominance (Assumption 2.2), see also Cox and Hobson
[11], and Heston Loewenstein and Willard [35]. Note that this theorem also values the forward
contract.

Theorem 6.3(European Put Price). For all K ≥ 0,

Pt(K) = P ∗
t (K). (60)

The proof of this theorem is trivial. Note that the payoff to the put option is bounded by
K, hence by Theorem 5.1 the result follows. Hence, European put options always equal their
fundamental values, regardless of whether or not the underlying asset’s price has a bubble. We
will revisit this observation when we discuss the empirical testing of bubbles in the paper’s
conclusion.

Theorem 6.4(European Call Price). For all K ≥ 0,

Ct(K)− C∗
t (K) = St −EQt∗ [ST |Ft] = βt. (61)
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Proof. Let V f∗
t (K) denote the fundamental wealth process of the portfolio consisting of a unit

forward contract with forward priceK and maturityT . Then

V f∗
t (K) = EQt∗ [ST |Ft]−K ≤ St −K. (62)

By applying no dominance (Assumption 2.2) to a unit forward contract and portfolio with a
unit long risky asset and−K money market account,

V f
t (K) = St −K

= (St − EQt∗ [ST |Ft]) + (EQt∗ [ST |Ft]−K)

= V f∗
t (K) + (St − EQt∗ [ST |Ft]).

(63)

This implies that a forward contract has a type 3 bubble of sizeδ3
t = St − EQt∗ [ST |Ft].

Take the conditional expectation with respect to the valuation measureQt∗ on the identity:
(ST −K)+ − (K − ST )+ = ST −K. Then

C∗
t (K)− P ∗

t (K) = V f∗
t (K) ≤ St −K. (64)

Applying no dominance (Assumption 2.2) to the portfolio consisting of a unit long call and a
unit short put against a unit forward contract,

Ct(K)− Pt(K) = V f
t (K) = St −K. (65)

This is put-call parity. By subtracting (64) from (65),

[Ct(K)− C∗
t (K)]− [Pt(K)− P ∗

t (K)] = (St −K)− V f∗
t (K)

=(St −K)− (EQt∗ [ST |Ft]−K)
=St − EQt∗ [ST |Ft]

=δ3
t ,

(66)

since the put option has a bounded payoff,Pt(K) = P ∗
t (K) andCt(K)− C∗

t (K) = δ3
t .

Since call options have finite maturity, call option bubbles must be of type 3, if they exist.
The magnitude of such a bubble is independent of the strike price and it equals the magnitude
of the asset’s price bubble. We see that even if the market satisfies NFLVR and no dominance,
an asset price bubble implies that there exists no valuation measureQt∗ such that the expected
discounted value of the call option’s payoffs equals its market price. Risk neutral valuation is
not able to match market prices in the presence of asset price bubbles.

6.2 American Options

This section investigates the pricing of American options in a static market. Because the time
value of money plays an important role in analyzing the early exercise decision of American
options, we need to modify the notation to make explicit the numéraire. In this regard, we
denote the timet value of a money market account as

Dt = exp
(∫ t

0
rudu

)
(67)
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wherer is the non-negative adapted process representing the default free spot rate of interest.
To simplify comparison with the previous sections, we still letSt denote the risky asset’s price
in units of the nuḿeraire.

Definition 6.1 (The Fundamental Price of an American Option). The fundamental priceV A∗
t (H)

of an American option with payoff functionH and maturityT is given by

V A∗
t (H) = sup

η∈[t,T ]
EQ[H(Sη)|Ft] (68)

whereη is a stopping time and the market selectedQ ∈Mloc(S).

This definition is a straightforward extension of the standard formula for the valuation of
American options in the classical literature. It is also equivalent to thefair price as defined by
Cox and Hobson [11] when the market is complete.

We apply this definition to a call option with strike priceK and maturityT . Letting
CA∗

t (K) denote the American call’s fundamental value, the definition yields

CA∗
t (K) = sup

η∈[t,T ]
EQ[(Sη − K

Dη
)+|Ft]. (69)

Let CA(K)t be the market price of this same option, andCE(K)t the market price of an
otherwise identical European call. Then, the following theorem is provable using standard
techniques.

Theorem 6.5. Assume that the jump process of the asset’s price,4S := (∆St)t≥0, where
∆St = St − St−, satisfies the regularity conditions of Lemma 10.1. Then, for allK

CE
t (K) = CA

t (K) = CA∗
t (K). (70)

Proof. (i) By Theorem 10.1 withG(x, u) = [x−K/Du]+,

CA∗(K)t = sup
t≤τ≤T

E[(Sτ −K/Dτ )+|Ft]

= E[(ST −K/DT )+|Ft] + (St −E[ST |Ft])

= CE∗
t (K) + β3

t

= CE
t (K)

(71)

The last equality is by Theorem 6.4.

(ii) A unit of an American call option with arbitrary strikeK is dominated by a unit of an
underlying asset. Therefore by No Dominance (Assumption 2.2),

CA
t (K) ≤ St. (72)

Let γt := CA
t (K) − CA∗

t (K) be a bubble of an American call option with strikeK. Since
American options have finite maturity,γt is of type 3 and is a strict local martingale. Then by
(i) and a decomposition ofSt,

CE∗
t (K) + β3

t + γt = CA∗
t (K) + γt

= CA
t (K) ≤ St

= S∗t + β1
t + β2

t + β3
t ,

(73)
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and therefore

γt ≤ [S∗t − CE∗
t (K) + β1

t ] + β2
t . (74)

The right side of (74) is a uniformly integrable martingale on[0, T ]. Henceγ is a non-negative
local martingale dominated by a uniformly integrable martingale. Thereforeγt ≡ 0.

This theorem is the generalization of Merton’s [48] famous no early exercise theorem (i.e.,
given the underlying stock pays no dividends, otherwise identical American and European call
options have identical prices). This extension is the first equality in expression (70), applied
to the options’market prices. The second equality implies thatAmerican call option prices
exhibit no bubbles, even if there is an asset price bubble!However, By Theorem 6.4, an asset
price bubble does create a difference between an American and European calls’fundamental
prices, i.e.

CA∗
t (K)− CE∗

t (K) = βt.

7 Forward and Futures Prices

This section studies both forward and futures prices trading in a static market. In the clas-
sical theory, differences between these two prices can only arise in a stochastic interest rate
economy. Consequently, we need to make explicit the money market account numéraire in the
notation for the asset’s price process. In this regard, we letS denote thedollar price of the
risky asset, andS/D the price in units of the nuḿeraire. Then,Q ∈ Mloc(S) implies that
S/D is aQ-local martingale. To simplify the presentation, we also assume that the risky asset
pays no dividends over the time interval(0, T ], whereτ > T almost surely.

For some key results, we need to introduce trading in default free zero-coupon bonds. In
this regard, we letp(t, T ) be the timet market priceof a sure dollar paid at timeT . Since
zero coupon bonds have bounded payoffs, by Theorem 5.1, we know that zero-coupon bonds
have no bubbles, hence this market price also represents the fundamental price. However, this
distinction will not be used below.

7.1 Forward Prices

Forward contracts were defined in section 6. Recall that a forward contract on the risky asset
S with strike priceK and maturityT is defined by its timeT payoff [ST − K]. The timet
forward pricefor this contract, denotedft,T , is defined to be that strike priceK that gives the
T - maturity forward contract zeromarketvalue at timet. Given these definitions, it is easy to
prove the following theorem.

Theorem 7.1.

ft,T · p(t, T ) = St.

Proof. By the No Dominance (Assumption 2.2), any two trading strategies yielding the same
payoff have the same market price. Let Portfolio A be a unit of a long forward contract and
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ft,T units of a zero coupon bond maturity at timeT . Let PortfolioB be a unit of the underlying
asset. LetΛA andΛB denote market prices of each portfolio. Then

0 + ft,T p(t, T ) = ΛA
t = ΛB

t = St (75)

since both portfolios have the same payoffST at maturity.

This is an intuitive and well known result which follows directly from the no dominance
assumption 2.2.

Corollary 7.1. (Forward Price Bubbles)

(1) ft,T ≥ 0.

(2) ft,T · p(t, T ) is aQ-local martingale for eachQ ∈Mloc(W ).

(3) ft,T · p(t, T ) = EQ[ST |Ft] + βt whereβt = St − S∗t .

Proof. The proof follows trivially because the risky asset’s price has these properties and
p(t,T)¿=0.

Thus, we see that discounted forward prices inherit the properties of the risky asset’s price
bubble. In fact, any bubble present in the discounted forward price for a risky asset must be
equal to the bubble in the risky asset’s market price.

7.2 Futures Prices

A futures contract is similar to a forward contract. It is a financial contract, written on the risky
assetS, with a fixed maturityT . It represents the purchase of the risky asset at timeT via
a prearranged payment procedure. The prearranged payment procedure is called marking-to-
market. Marking-to-market obligates the purchaser (long position) to accept a continuous cash
flow stream11 equal to the continuous changes in the futures prices for this contract. The time
t futures prices, denotedFt,T , are set (by market convention) such that newly issued futures
contracts (at timet) on the same risky asset with the same maturity dateT , have zeromarket
value. Hence, futures contracts (by construction) have zero market value at all times, and a
continuous cash flow stream equal todFt,T . At maturity, the last futures price must equal the
asset’s priceFT,T = ST (see Duffie [22] or Shreve [59] for further clarification).

With respect to futures contracts, in the existing finance literature, the characterization
of a futures price implicitly (and sometimes explicitly) uses the existence of a given local
martingale measureQ which makes the futures price a martingale (e.g., see Duffie [22], p.
173 or Shreve [59], p. 244). Since futures prices have bounded maturities, this excludes (by
fiat), the existence of futures price bubbles. Thus, to study bubbles in futures prices, we first
need to generalize the characterization of a futures price to remove this implicit (or explicit)
restriction.

Let us construct a portfolio long one futures contract. The wealth process of this portfolio,
denotedV F

t , is then given by

V F
t =

∫ t

0

1
Du

dFu,T =
(

Ft,T

Dt
− F0,T

)
+

∫ t

0

Fu,T

Du
rudu (76)

11For simplicity, we assume that futures contracts are marked-to-market continuously.
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where the second equality is due to an integration by parts.
If (V F

t )t≥0 is not locally bounded from below, then buying a futures contract is not an
admissible trading strategy. In the context of our model, this implies that futures contracts
cannot trade. To avoid this contradiction, given that we already assume futures contracts trade,
we assume thatV F

t is locally bounded.
Let (Tn)n≥1 be a sequence of stopping times such that(V F

Tn∧t)t≥0 is bounded from below
for eachn. Then, there exists aQ ∈Mloc(W ) such thatV F is a local martingale by applying
the First Fundamental Theorem of asset pricing to the market with the assets(Dt, V

F
t )t≥0,

stopped atTn, eachn. Note that by stopping,V F is locally aQ-local martingale, and hence a
Q-local martingale.

Definition 7.1. Semimartingales(Ft,T )0≤t≤T satisfying the following properties are called
NFLVR futures price processes.

(1) V F
t is locally bounded from below.

(2) There exists aQ ∈ Mloc(W ) such that(V F
t∧Tn

)t≥0 is a Q-local martingale where
(Tn)n≥1 is a sequence of stopping times such that(V F

t∧Tn
)t≥0 is bounded from below

for eachn.

(3) FT,T = ST .

Let ΦF denotes the class of all NFLVR futures price processes. We also note that since
futures contracts are not replicable using an admissible trading strategy which uses only the
risky asset, then any NFLVR futures price process also satisfies the no dominance assumption.

Note that we do not require futures prices(Ft,T )t≥0 to be non-negative.
With this definition, the following theorem immediately follows.

Theorem 7.2. Fix a Q ∈Mloc(W ).
Define(F ′

t,T )t≥0 = (EQ[ST |Ft])t≥0. Then,(F ′
t,T )t≥0 ∈ ΦF .

Proof. SinceSt is non-negative,F ′
t,T = EQ[ST |Ft] ≥ 0. By equation (76),

V F ′
t =

(
F ′

t,T

Dt
− F ′

0,T

)
+

∫ t

0

F ′
u,T

Du
rudu ≥ −F ′

0,T (77)

andV F ′
t is admissible.F ′

T,T = ST is trivial. Since(F ′
t,T )t≥0 is a martingale and1/D is

continuous,V F ′ is a local martingale.

As expected, the classical definition of a futures price (Duffie [22], p. 173 or Shreve [59],
p. 244) gives an acceptable NFLVR futures price process. The classical futures price is a
uniformly integrable martingale, and hence exhibits no bubbles. However, this is not the only
possible NFLVR futures price process.

Theorem 7.3. (Futures Price Bubbles)
Letβ be a localQ -martingale, locally bounded from below12, with βT = 0.
Define(Ft,T )t≥0 by

Ft,T = EQ[ST |Ft] + βt. (78)

Then,(Ft,T )t≥0 ∈ ΦF .
12We note thatβ is not restricted to being non-negative.
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Proof. Observe thatEQ[ST |Ft] ≥ 0 for eacht by the non-negativity ofST . Sinceβt is locally
bounded from below,(Ft,T )t≥0 is also locally bounded from below. Without loss of generality
(by stopping) we assume that(Ft,T )t≥0 is bounded from below by−K for someK ≥ 0. Then

V F
t ≥ −F0,T − K

Dt
+ K

(
1
Dt

− 1
)
≥ −F0,T −K (79)

ThereforeFt,T ∈ ΦF .

We see that futures price bubbles are consistent with futures contracts trading in a market
satisfying NFLVR and no dominance.

In the classical approach, futures prices are given byFt,T = EQ[ST |Ft], which is a uni-
formly integrable martingale underQ. SinceST is non-negative,Ft,T is non-negative. How-
ever, in an economy which allows bubbles, as Theorem 7.2 shows, a bubble can be negative if
−βt > EQ[ST |Ft].

The reason for this possibility is that if the underlying assetS and the spot rater exhibit
a large negative correlation underQ, then the holder of a long futures contract has to borrow
money when the spot rate is high and invest when the spot rate is low. If futures prices are
expected (underQ) to dramatically decline, then in units of the numéraire, this generates a
cash flow stream so negative (in expectation), that negative futures prices are necessary to
produce futures contracts with zero value.

8 Charges

This section shows the equivalence between thelocal martingale approach(Loewenstein and
Willard [44], [45], Cox and Hobson [11], and Heston, Loewenstein and Willard [35]) and the
charges approach(Gilles [30], Gilles and Leroy [31], Jarrow and Madan [41]) to bubbles.
This correspondence is obtained via a generalization of the arbitrage free price system used by
Harrison and Kreps [34] and Harrison and Pliska [32].

8.1 Price Operators

This section introduces the concept of a price operator. We start with the price functionΛt :
Φ → R+ introduced in the no dominance assumption 2.2 that gives for eachφ ∈ Φ, its timet
priceΛt(φ). Let Φm ⊂ Φ represent the set of traded assets. For our economyΦm = {1, S}.

The no dominance assumption implies the following lemma.

Lemma 8.1. (Positivity and Linearity onΦ) Let ”<t” denote dominance in the sense of As-
sumption 2.2 at timet.

(1) Letφ′, φ ∈ Φ. If φ′ <t φ for all t, thenΛt(φ′) > Λt(φ) for all t almost surely.

(2) Let a, b ∈ R+ andφ′, φ ∈ Φ. Then,aΛt(φ′) + bΛt(φ) = Λt(aφ′ + bφ) for all t almost
surely.

Proof: Condition (1) is the definition of no dominance restated, and condition (2) follows
by assuming strict inequality (for each direction in turn), and obtaining a contradiction using
condition (1). ¤
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In particular, if
∫
(t,ν] d∆u +Ξν = 0 almost surely forφ = (∆,Ξν), thenΛt(φ) = 0 almost

surely. Linearity excludes liquidity impacts as in Çetin, Jarrow and Protter [10], and it implies
thatΛt is finitely additive onΦ.

By lemma 2.3, we know that the market prices of the traded assets satisfy NFLVR. Thus,
for each traded assetφ ∈ Φm, Λ(φ) is aQi -local martingale on the set{σi ≤ t < σi+1} for
eachi. This implies by Theorem 4.2 that forφ ∈ Φm,

Λt(φ) = Λ∗t (φ) + δt(φ)

whereδt(φ) is a non-negativeQi-local martingale. Of course,δt(φ) is the traded asset’s price
bubble. To extend this property ofΛt on the setΦm to all of Φ, we add the following assump-
tion.

Assumption 8.1. LetΛt : Φ → R+ be such that for eachφ ∈ Φ, there exists aδ such that

Λt(φ) = 1{t<ν}
∑

i≥0

(
EQt∗

[∫ ν

t
d∆u + Ξν

∣∣∣∣Ft

]
+ δi

t(φ)
)

1{t∈[σi,σi+1)}

=
(

EQt∗

[∫ ν

t
d∆u + Ξν

∣∣∣∣Ft

]
+ δt(φ)

)
1{t<ν}

= Λ∗t (φ) + δt(φ)

(80)

whereQt∗ is a valuation measure,δi(φ) is a non-negativeQi-local martingale such that
δν(φ) = 0 and

δt(φ) =
∑

i≥0

δi
t(φ)1{t∈[σi,σi+1)}. (81)

We call anyΛt satisfying this assumption amarket price operatorand denote the collection
(Λt)t≥0 by Λ. We call(Λ, Φ) aprice system.

The notion of a price system was proposed in the seminal papers of Harrison and Kreps
[34] and Harrison and Pliska [32]. In Harrison and Kreps [34], the price system is first defined
on a collection of securities inL2, replicable by self-financing simple trading strategies and
then extended toL2(Ω,F , P ). More importantly, the model has a finite time horizon and
every local martingale in their framework is a uniformly integrable martingale. One of the
their key conclusions (Theorem 2) is that the market admits no simple free lunches if and only
if the market price operator is given by an expectation with respect to an equivalent martingale
measure.

This theorem characterizes the existence of equivalent martingale measures, and it is now
known as the First Fundamental Theorem of asset pricing. As shown by Delbaen and Shacher-
mayer (e.g. [13], [14]), this is true in a much more general setting, properly interpreted. Since
every martingale on a finite time horizon is a uniformly integrable martingale and closable,
once an EMM is identified, the price of the asset before maturity is given as a conditional ex-
pectation, which leads to their characterization of the market price operator. In a more general
setting, when the market price process ofφ is a strictQi -local martingale or if the maturityν
is unbounded andΛ(φ) is a non-uniformly integrable martingale, market prices can differ from
the conditional expectation. The bubble componentδ(φ) in (80) represents this difference.
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8.2 Bubbles

In the literature, an alternative approach to explain bubbles is to introduce charges (see Jarrow
and Madan [41], Gilles [30] , Gilles and Leroy [31]). The following theorem shows that the
local martingale characterization of market prices has a finitely additive market price operator
if and only if bubbles exist.

Theorem 8.1. Fix t ∈ R+. The market price operatorΛt is countably additive if and only if
bubbles do not exist.

Proof. Fix φ ∈ Φ whereφ = (∆,Ξν). If ν ≤ t, thenSt = S∗t = 0. Therefore it suffices to
consider the case whent < ν. Define a sequence of stopping times(τn)n≥0 by τ0 = t and

τn = inf
{

s ≥ t :
∫ s∧ν

t
d∆u + Ξν ≥ n

}
∧ ν, n ≥ 1 (82)

and defineφn ∈ Φ by φ0 = (0, 0) and

φn =
(
∆τn−, Ξν1{ν<τn}

)− (
∆τn−1−,Ξν1{ν<τn−1}

) ∀n ≥ 1 (83)

where∆τn− is a process such that∆τn−
u = ∆τn∧u −4∆τn1{τn=u} . Then for eachn, φn is

bounded byn and

φ =
∞∑

n=0

φn. (84)

Sinceφn is bounded,

Λt(φn) = Λ∗t (φn)
= EQt∗

[
∆τn− −∆τn−1− + Ξν1ν∈[τn−1,τn)

∣∣Ft

]
1{t<ν}

(85)

Assume thatΛt is countably additive. Then

Λt(φ) = Λt(φ) = Λt(
∑

n

φn) =
∑

n

Λt(φn)

=
∑

n

EQt∗
[
∆τn− −∆τn−1− + Ξν1ν∈[τn−1,τn)

∣∣Ft

]
1{t<ν}

= EQt∗ [
∑
n

{
∆τn− −∆τn−1− + Ξν1ν∈[τn−1,τn)

} |Ft]1{t<ν}

= EQt∗

[∫ ν

t
d∆u + Ξν |Ft

]
1{t<ν},

(86)

since∆ν− = ∆ν . This implies that bubbles do not exist in the market price ofφ. Since this
is true for allφ ∈ Φ, bubbles do not exist. Conversely if bubble do not exist then the market
price operator is given by a conditional expectation and countable additivity holds.

This theorem shows that the characterization of bubbles as charges is an alternative per-
spective of our model based on the characterization of local martingales, but in essence is not
different.
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9 Conclusion

This section concludes the paper with a brief discussion of the existing empirical literature
testing for bubbles, followed by some suggestions for future research. As mentioned in the
introduction, there is a vast empirical literature with respect to bubbles, studying different
markets over different time periods, including:

(1) the Dutch tulipmania 1634-37 (see Garber [28], [29]),

(2) the Mississippi bubble 1719-20 (Garber [29]),

(3) the South Sea bubble of 1720 (Garber [29], Temin and Voth [61]),

(4) foreign currency exchange rates (Evans [24], Meese [47]),

(5) with respect to German hyperinflation in the early 1920s (Flood and Garber [26]),

(6) U.S. stock prices over the 20th century (West [65],[66], Diba and Grossman [20], Dezh-
bakhsh and Demirguc-Kunt [18], Froot and Obstfeld [27], McQueen and Thorley [46],
Koustas and Serletis [42]),

(7) the 1929 US stock price crash (White [67], DeLong and Shleifer [17], Rappoport and
White [54], Donaldson and Kamstra [21]),

(8) land and stock prices in Japan 1980 - 1992 (Stone and Ziemba [60]),

(9) US housing prices 2000 - 2003 (Case and Shiller [8]), and finally

(10) the NASDAQ 1998-2000 internet stock price peak (Ofek and Richardson [50], Brun-
nermeier and Nagel [6], and, Cunado, Gil-Alana and Perez de Gracia [12], Pastor and
Veronesi [51], and Battalio and Schultz [5]).

The majority of these empirical studies are based on models in discrete time with infinite
horizons where there exists a martingale measureQ, and the traded assets have no terminal
payoffs atτ = ∞. By our Theorem 4.2, this last observation excludes type 1 bubbles. In
discrete time models, when the current stock price is known, there are no local martingales.
Hence, by construction these models exclude type 3 bubbles as well. Hence, the models in
the existing literature have really only investigated the existence of type 2 bubbles (i.e. IsQ
a uniformly integrable martingale measure or not?). As one might expect from such a vast
literature, the evidence is inconclusive.

This empirical indeterminacy is due to the fact that to test

βt = St −EQ

[∫ ∞

t
dDu

∣∣∣∣Ft

]
6= 0,

one must assume a particular model forEQ

[∫∞
t dDu

∣∣Ft

]
. As such, these empirical tests

involve a joint hypothesis: the assumed model and the null hypothesisβt 6= 0. Different
studies use different models with different conclusions obtained.

To our knowledge (as just mentioned) there appears to be no empirical study testing for
type 3 bubbles. This is an open empirical question. Theorems 6.3 and 6.4 provide a plausible
procedure for implementing such a test, assuming the market is incomplete, of course. Using
the insights from Jacod and Protter [37], if enough European put options trade, then we can
infer the market selected ELMMQ from the put option market prices. Next, givenQ, we can
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compute the fundamental prices of the traded European call options, and compare them to the
calls’ market prices. If they differ, a type 3 bubble exists. And, the magnitude of the bubble
must match the magnitude of the type 3 bubble in the asset’s market price - providing the test
for a type 3 asset price bubble.

This proposed testing procedure, however, does not test for either type 1 or type 2 asset
price bubbles. To do this, it seems as if there is no choice other than to assume a particular
model for the stock’s fundamental price. We look forward to the continued empirical search
for bubbles, and we hope that some of the theorems we’ve generated herein will be useful in
that regard.
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10 Appendix:

This appendix proves some lemmas and theorems used in the American option pricing section
of the text.

Lemma 10.1. Let Mu be a non-negative càdlàg local martingale. Assume that there exists
some functionf and a uniformly integrable martingaleX such that

4Mu ≤ f( sup
t≤r<u

Mr)(1 + Xu), (87)

where4Mu = Mu −Mu−. Then forSm = inf{u > t : Mu ≥ xm},

lim
m→∞EQ

[
MSm1{Sm∈(t,T )}

]
= Mt − EQ[MT |Ft] (88)

Proof. To simplify the notation, we omit the Q subscript on the expectations operator. LetTn

be a fundamental sequence ofMt. ThenMTn
t = E[MTn

T |Ft] and hence

MTn
t = MTn

t 1{Sm=t} + E[MTn
Sm

1{Sm∈(t,T )}|Ft] + E[MTn
T 1{Sm=T}|Ft] (89)

By hypothesisMTn
Sm

≤ xm + f(xm)(1 +4XSm) andMTn
T ≤ xm + f(xm)(1 + XT ). By the

bounded convergence theorem,

Mt = lim
n→∞MTn

t = Mt1{Sm=t} + E[MSm1{Sm∈(t,T )}|Ft] + E[MT 1{Sm=T}|Ft] (90)

SinceX is a uniformly integrable martingale, it is in class D and{Xτ}τ :stopping timesis uni-
formly integrable. Fixm. ThenMTn

T , MTn
Sm

are bounded by a sequence of uniformly integrable
martingales. Therefore taking the limit with respect ton and interchanging the limit with the
expectation yields:

Mt = lim
m→∞E[MSm1{Sm∈(t,T )}|Ft] + E[MT |Ft]. (91)

Theorem 10.1. Let M be a non negative local martingale with respect toF such that4M
satisfies a condition specified in Lemma10.1. LetG(x, t) : R+ × [0, T ] → R+ be a function
such that

• G(x, s) ≤ G(x, t) for all 0 ≤ s ≤ t ≤ T

• For all t ∈ [0, T ], G(x, t) is convex with respect to x.

• limx→∞
G(x,t)

x = c for all t ∈ [0, T ],

then

sup
τ∈[t,T ]

EQ[G(Mτ , τ)|Ft] = EQ[G(MT , T )|Ft] + (c ∧ 0)(Mt − EQ[MT |Ft]) (92)
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Proof. To simplify the notation, we omit the Q subscript on the expectations operator. Suppose
c ≤ 0. Then by monotonicity with respect tot and Jensen’s inequality applied to a convex
functionG and a non-negative local martingaleM·,

sup
τ∈[t,T ]

E[G(Mτ , τ)|Ft] ≤ sup
τ∈[t,T ]

E[G(Mτ , T )|Ft]

≤E[G(MT , T )|Ft]
≤ sup

τ∈[t,T ]
E[G(Mτ , τ)|Ft]

(93)

and

sup
τ∈[t,T ]

E[G(Mτ , τ)|Ft] = E[G(MT , T )|Ft]. (94)

Supposec > 0. Fix ε > 0. Then there existsξ > 0 such thatε > 0 ∃ξ > 0 such that∀x > ξ,
G(x,0)

x > c − ε and henceG(x,u)
x > c − ε for all u ∈ [0, T ]. Let {xn}n≥1 be a sequence in

(ξ,∞) such thatxn ↑ ∞. Let

Sn = inf{u > t : Mu ≥ xn} ∧ T. (95)

Without loss of generality we can assume thatMt < xn. SinceG(·, t) is increasing int,

sup
τ∈[t,T ]

E[G(Mτ , τ)|Ft] ≥ E[G(MSn , Sn)|Ft]

= E[G(MT , T )1{Sn=T}|Ft] + E[G(MSn , Sn)1{Sn<T}|Ft]

≥ E[G(MT , T )1{Sn=T}|Ft] + E[G(MSn , 0)1{Sn<T}|Ft]

(96)

SinceMSn ≥ xn > ξ, G(MSn , 0) ≥ (c− ε)MSn . Next, let’s take take a limit ofn →∞. By
Lemma 10.1 applied with{Sn} and the monotone convergence theorem,

lim
n→∞ sup

τ∈[t,T ]
E[G(Mτ , τ)|Ft]

≥ lim
n→∞

{
E[G(MT , T )1{Sn=T}|Ft] + (c− ε)E[MSn1{Sn<T}|Ft]

}

≥E[(G(MT , T )|Ft] + (c− ε)(Mt − E[MT |Ft]).

(97)

Lettingε → 0,

sup
τ∈[t,T ]

E[G(Mτ , τ)|Ft] ≥ E[G(MT , T )|Ft] + cβt (98)

To show the other direction, letGc(x, u) = cx−G(x, u). Gc(x, ·) is a non-positive increasing
concave function w.r.tx such that

lim
x→∞

Gc(·, x)
x

= 0 (99)

By Jensen’s inequality,

E[Gc(MT , u)|Fu] ≤ Gc(E[MT |Fu], u) ≤ Gc(Mu, u) (100)
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Therefore

G(Mu, u) ≤c(Mu −E[Gc(MT , u)|Fu])
=cβu + E[G(MT , u)|Fu]
≤cβu + E[G(MT , T )|Fu]

(101)

Since this is true for allu ∈ [t, T ], G(Mτ , τ) ≤ cβτ + E[G(MT , T )|Fτ ] for all τ ∈ [t, T ]. By
the tower property of martingales, and a supermartingale property,

E[G(Mτ , τ)|Ft] ≤ E[cβτ + E[G(MT , T )|Fτ ]|Ft] ≤ E[G(MT , T )|Ft] + cβt. (102)

Therefore

sup
τ∈[t,T ]

E[G(Mτ , τ)|Ft] = E[G(MT , T )|Ft] + cβt (103)

This theorem is an extension of Theorem B.2 in Cox and Hobson in two important ways.
First, we relax the assumption that a martingaleMt be continuous. Second, the payoff function
G(·, x) allows a more general form and, in particular, it allows an analysis of an American
option in an economy with a non-zero interest rate.
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